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1 Summary 

Level Set Systems and the Rice CAAM group have continued to test the state of the art target detec- 
tion/template matching method based on LI minimization. Given the spectral signature of a material, we 
are able to identify the pixels in a hyperspectral image(HSI) that contains the material. A new data set(from 
RIT) was used to test the accuracy of the algorithm with very good results. The speed of our unmixing 
algorithm has been improved and a comparison with the standard nonnegative least squares is given. We 
have also expanded the use of the Bayesian dictionary learning and sparse reconstruction method by utiliz- 
ing spatial inter-relationships between different components in images and trying to incorporate sparsity of 
spectral vectors in terms of sparse representation by endmembers into reconstruction. 

2 Improved Unmixing 

A hyperspectral image spectral can be composed of a relatively small number of materials. Different materials 
have different hyperspectral signatures, referred to as endmembers. Due to the usual low resolution of HSL 
the pixels often contain a mixture of materials. However, it is often the case that only a few materials are in 
any given pixel. Unmixing is the process of determining which materials/endmembers are in a given pixel. 
A hyperspectral image is represented by a three-dimensional data cube M. There is an image for every band 
in the hyperspectral cube. Each image has m rows and n columns. There are b spectral bands in the data 
cube. Formally, 

A/eRmxnxi\    A/>0. 

Let / 6 R6 be one of the pixels of the data cube M. and E = [e\ ei ••• e/c], where e; are the 
endmembers(either given or computed). We will assume that a pixel is composed of a linear combination of 
the endmembers, i.e., 

K 

f = 2_.x'ei — Ex- 
t=i 

If we assume that only a few endmembers are contained in a pixel, then we want the coefficient vector x to 
be sparse. Additionally, we require x > 0, since there can only be a positive amount of a material in a pixel. 

Following [1], the original ^-minimization model we used was 

min|x|! +-||Ex -/H2,    s.t. x > 0. 
x 2 

Using the Split Bregman method [2] gives the following algorithm: 



i Initialization x° = 6° = d° = 0, f° = f. We define 7 = 1/A 
2 for k <— 1 to nOuter do 

for r 4— 1 to nlnner do 
6n + l =6n+an_rfn. 

x"+i = (£7"E + 7/)"'(£77'c-6n+1+<f1); 

rf"+1 =max(an+1 + 6n+1 -/z,0); 
end 
fk+1 _ jk + j _ Exn+l   . 

9 end 

Numerically, the above algorithm gives essentially the same solution as the nonnegative least squares 
problem minx \\Ax - f\\2 s.t. x > 0. However, the nonnegative least squares implementation in Matlab was 
significantly faster than the above algorithm. In order to speed up the computation, we consider a different 
implementation of the following model [3]: 

min r)\\x\\i + ||£x-/||2,    s.t. x > 0, 
X 

and 77 is a positive constant. The above is equivalent to the the following problem 

m\nx.d riY,x+\\Ex-f\\2; 
x = P{d). [l> 

where P is a component wise operator defined as 

,   .      / Q    Q > 0 /r>. 
P{Q) = {  0      otherwise, (2) 

The constrained problem (1) is replaced by the following sequence of unconstrained problems: 

(3) 
dk+ixk+i =m\nXtd AT7£> + \\\Ex - f\\2 + \\x - P(d) - bk\\2, 
6fc+i =ft* + p(d*+i)_x*+i. 

where A is a user defined parameter. 
The first subproblem can also be split into two, giving 

dk+l =mind A77^x + A||Exfc-/||2 + ||ar*'-P(rf)-6t||2. 
xlc+1=min:r A7/^x + A||Px-/||2 + ||x'c-P(dfc+1)-6fc||2, (4) 
bk+i =bk + p(rf*+l) _!*+!, 

Each subproblem can now be solved exactly using the iterations: 

dk+i _ p(xk _ hky 

xk+1 = (AETP + I)-\P{dk+1) + bk+ \ETf - Xrjl). (5) 
bk+i = bk + P(dk+1) - xk+l, 

2.1    Experimental Results 

We applied the improved algorithm to a dataset of Moffet Field, CA obtained from NASA [4]. It has spatial 
dimensions of 500x614 and 224 spectral bands. Six endmembers were chosen with parameters A = 11 ^T% 

and 77 = 1. Results are given in Figures 1-6. The improved algorithm also has a significant edge over the 
nonnegative least squares method of Matlab in computational time. The table below gives comparisons of 
the computational time for 4 different hyperspectral data sets in addition to the Moffet Field data. The 
other data sets include the URBAN set from [5], and 3 data sets provided to us by Major Fay Spellerberg 
of the USAF. 



Data Spatial Dim. Spec. Bands # of endmembers Time for NNLS(s) Time for LI unmixing(s) 
Moffet Field 500x614 224 6 246 42 

URBAN 307x307 163 6 76.4 12.2 
AF Oil 573x256 210 4 102.5 19.1 
AF012 573x256 210 1 98.7 19.0 
AF016 573x256 210 4 109.9 19.0 

Figure 1: Unmixed data 

3    Anomaly/Target Detection 

We have further tested out anomaly/target detection algorithm, which is summarized as follows. Given a 
HSI with NxN pixels and M spectral bands, we wish to locate the positions of pixels that correspond to a 
given spectral signature /, which also has M spectral bands. We rearrange A as an M x N2 matrix, where 
generally M < N2. The signals Oj are the columns of this spectral matrix A and correspond to each pixel 
in the image. 

Our goal is to find u e RN   by solving the constrained minimization problem 

u = argmin \u\x  s.t. \\Au — f\\ < 6, 
u>0. (6) 

where 6 is a measure of the noise in the system. 
To solve this, we apply Bregman iteration [6, 7], by solving a sequence of unconstrained minimization 

problems. 

un+1 = argmin (MMI + ^MU /"I (7a) 



Figure 2: Unmixed data 

p = /'-1 + / - Aun~l (7b) 

for n = 1,2,..., with u° = 0. The constant A is usually chosen around A = IUT^II- \\AU — fn\\   monotonically 
decreases to zero and un converges very quickly to a solution of (6) with 6 = 0, see [7, 6]. 

It now becomes a matter of solving (7a) and (6) efficiently. We propose two recently developed algorithms 
(1) Split Bregman[2] for (7a) and/or (6), linearized Bregman for (6) [8, 9, 10, 7]. The idea behind both of 
these is quite simple. There are two simple minimization problems to be solved. A combination of these 
solvers will converge to the desired solution, as we described before. To solve 

argmin UHI + 2 II" /I 

we have the following well known shrinkage formula 

[  fi-M    if I, > li 
m = shrink{fi,fi) = I   0 if |/,| < n 

[ fi+V   iifi<-f* 
Moreover, if we add the constraint that Ui > 0. then 

Ui = shrink+(fi,fi) 
f,-H   if fi > n 
0 if /, < n 

To solve 

for a hxed vector d, we have 

'A 1 
argmin [ - \\Au - f\\2 + - ||d - u||2 

(8) 

0) 

(10) 

(11) 

u = {XATA + I)     (XATf + d) (12) 



Figure 3: Unmixed data 

The idea behind split Bregman is s follows: We replace the problem (7a) by a sequence of approximations 
generated by Bregman iteration: 

(dk+1, Uk+1) = argminfi \d\x 4- f \\Au - /||2 + l\\d-U- bkf 
bk = bk~1 +Uk -dk~1 

The steps used in the solution for (13a) and (13b) involve splitting 

uk+l = (\ATA + ry1 (\ATf" - bk + dk) 
dk+l = shrink (Uk+1 + bk+\n) 

Uk approaches un+l monotonically, \\Uk — un\\ \ 0, and of course, ||d — Uk\\ \ 0. Thus we use an inner 

(13) 

(14) 

iteration to obtain the sequence Uk,dk, which converges to the updated u. We then update using (7) to get 
/n+1 and repeat the inner iteration to get un+2. This procedure is very efficient. The number of of inner 
iterations needed is problem dependent, but usually between 5 and 10. 

Alternatively, we may use the linearized Bregman approach [8, 9, 10, 7] to solve (6) directly. This involves 
a very simple 2 line code and has the advantage that we need not compute the matrix inverse appearing in 
(14a). However, it is a bit slower for bigger matrices A. The entire algorithm is as follows: 

(15) 
( uk+\ = Sshrink (yk,fi) 
\ „*+! =vk+AT\f-Auk+1) 

for v° =0,k = 0,1,... with \AAT <I,6> 0. 
For (i sufficiently large, this converges to a solution of (6), see [11]. However, in general the solution u 

satisfies 

u = argminl\u\l+— \\ufj (16) 

such that Au = /. 



Figure 4: Unmixed data 

3.1    Experimental Results 
3.1.1 RIT Data 

We obtained some HSI data from Rochester Institute of Technology(RIT) [12] to test our target detection 
algorithm. The first set of targets consisted of 6 pieces of cloth, made of nylon or cotton, and of different 
sizes and colors. We ran the target detection algorithm for each of the 6 cloth targets, and used the ground 
truth location as the spectral signature for each target. A 80x80x126 subset of the whole data set. which had 
size 280x800x126, was used for the computation. Figure 9 shows the ground truth locations of the 6 pieces 
of cloth and Figure 10 shows the computed locations of the targets. The locations were exactly computed 
with no false pixels identified. 

A second set of targets consisting of 3 vehicles was also used to test the algorithm. Each vehicle was 
detected in a separate run of the algorithm, and the ground truth locations of the targets were used as the 
spectral signatures. Similar to the first test, we used a subset of size 80x80x126 for the experiment, and the 
locations of the vehicles were exactly detected with no falsely identified pixels. Figure 7 shows the ground 
truth locations of the 3 vehicles and Figure 8 shows the computed locations of the targets. 

3.1.2 Detecting Targets on the Whole Data Set 

Running our target detection algorithm on the entire 280x800x126 HSI would have been prohibitive due 
to large memory requirements. We are currently testing methods to overcome this limitation. One such 
method is to break up the data cube into pieces spatially, and run the algorithm on each piece. However, 
numerical experiments revealed that if the subset of the data cube does not contain the target, the algorithm 
may falsely identify some pixels as targets. The reason for this is that the solution to (6) tends to produce 
solutions u^O, even though that is the ideal solution if the target / is not present in the data cube. One 
possible solution to this problem is to slightly alter the matrix of pixels A, by adding a column fs at the end. 
fs = f + 6, where d" is some noise. Then the new matrix becomes A = [A : fs] and has size M x (N2 + 1). 



Figure 5:  Unmixed data 

Then we solve the altered problem 

u = argmin\u\x s.t. \\Au — f   < 6, 

u>0, 

If A does not contain the target /, the solution should be u = (0,... , 0,a), where Q > 0. We then take the 
solution to the original problem as Uj = «*, i = l,...,N2. If A does contain the targets, the addition of 
fs to the end of A does not effect the identification of the real targets. We tested this on one of the cloth 
targets, result shown in Figure 11, and on one of the vehicles, shown in Figure 12. As seen in the figures, the 
targets were detected exactly with no falsely identified pixels. Each of the subsets were of size 40x40x126. 
and a total of 140 calculations were required to process the entire 280x800xl2fi data cube. The calculated 
threshold value(described in the section below) for these was t = 0, so falsely identified pixels were not a 
problem for this particular data set. Noise was also not a problem for this data set, so we set 6 = 0. 

3.1.3    Thresholding 

Our previous experiments have shown that the number of falsely identified pixels can be reduced by thresh- 
olding the values of Ui > 0. Therefore, we consider pixel i as a falsely identified target if uj < t for some 
threshold value e > 0. So far, we have determined the threshold value e by trial and error, but we present 
a method for computing it automatically. Let us = {ui : Ui > 0}. Next, sort the values of us in descending 
order. Our numerical experiments have shown that the values ut of the falsely detected pixels are generally 
much smaller that the values of the correctly identified pixels. This suggest that the threshold should be 
where the largest jump is in us. As an example, we consider the real HSI data provided to us by NGA, 
which was analyzed in our second report. More specifically, we look at the plot of u" for the gravel target, 
shown in Figure 13. It is clear where the biggest jump in us is and suggests that the threshold value in this 
case should be 0.0079. 



Figure 6:  Unmixed data 

4    Bayesian Dictionary Learning for Sparse Image Representations 
and Reconstruction 

4.1 Summary 

We applied the recent Bayesian dictionary learning method [13] to reconstruct hyperspectral images from 
very few observations. The Bayesian dictionary learning method models a hyperspectral image as the 
sparse sum of a set of dictionary atoms, which are assumed to follow certain distributions and learned 
by statistical inference from partial observations of the hyperspectral image. The size of dictionary can 
be inferred nonparametrically. For reconstructing hyperspectral images from very few samples, no prior 
knowledge of the noise variance needs to be assumed, and the noise variance can also be non-stationary. 
We have utilized spatial inter-relationships between different components in images and tried to incorporate 
sparsity of spectral vectors in terms of sparse representation by endmembers into reconstruction. Numerical 
experiments using real hyperspectral were performed, with very good results. 

4.2 Sparse Image Representation 

Image reconstruction and analysis are based on how images are represented. In the standard representation, 
a natural signal is treated as an array of pixels in space or time. This is convenient for digitally sampling, 
display or playback. However, it is inefficient for many reconstruction and analysis tasks. 

A more meaningful representation shall describe the useful characteristics of the signal: for reconstruction 
from noisy measurements, the representation should efficiently separate signal and errors; for compression, 
the representation should capture a large part of the signal with a sparse or compressible set of coefficients; 
for analysis such as decomposition and recognition, the representation should highlight salient features. They 
seem to be different goals but they all look for a sparse representation of features. 

One way of such representation involves the choice of a dictionary, which is the set of elementary signals (' 
or atoms C used to decompose the signal. Consider a signal igl" and a fixed dictionary D = [d1 d2 • • • rfA'], 



Band 20 

Figure 7:  Ground truth locations of the 3 vehicles. 

where each dm e Kn. We wish to have such a D that x may be well approximated by x = Da. In the simplest 
case the dictionary is orthogonal. Examples include the discrete cosine basis and various wavelets based 
bases. They have been thoroughly studied and widely considered in applications because they are easy to 
analyze and they have fast numerical implementations. However, they are over-simplistic for certain real data 
including hyperspectral imagery. To find sparser, meaningful representations for more signals, researchers 
have recently developed non-orthogonal dictionaries, some of which are overcomplete (i.e., M > n) and/or 
trained, as opposed to analytic. 

The earliest major work in dictionary training is due to Olshausen and Field [14], who trained an over- 
complete dictionary for sparsely representing small image patches of a set of natural images. Remarkable 
results were obtained from a simple algorithm, namely, the atoms in the trained image were very similar 
to the simple cell receptive fields in early vision. What is remarkable in this finding is that sparsity plays 
a key role in biological visual behavior. It suggests the potential of sparse representation in uncovering 
fundamental features in complex signals. 

Inspired by Olshausen and Field's and others' work [14, 15, 16, 17], especially the recent work by Lawrence 
Carin's group [18, 13], we wish to impose that the coefficients a* in the representation x = Da are sparse. 
With a proper D, the computation of sparse a is robust to noise and numerically tractable even when 
x is partially or indirectly observed via a small number of measurements (as arising in problems such as 
inpainting, interpolation and compressive sensing). The recent work [13] is different from all previous work 
in the following aspects. First, when D is given, previous work computes Q as a point estimate (i.e., a 
vector) but [13] returns a posterior distribution through statistical inference. Second, to return the point 
estimate of a, previous work uses algorithms such as basis pursuit and orthogonal matching pursuit, for 
which the parameters and stopping criteria are defined based on assumed knowledge such as noise variance 
or the sparsity of true a. However, the noise variance can be inferred in [13]. Last, to learn the dictionary 
D, its size M is fixed but the statistical inference method does not require this assumption. 



Located Targets 

Figure 8: Found locations of the 3 vehicles. 

4.3    The Dictionary Model 

Specifically, the method we use is based on the Beta process [18] applied to the model x' = Da' + e' [13]. 
where each x' G R" is a hyperspectral image, D = [dl <P ••• dM] 6 Rn*A/ is a dictionary, a' e RA/ is a 
sparse vector, and e1 € Rn is noise. A hierarchical model, which is a dependence graph of random variables, 
is assumed: 

dm ~ ^(O.F-'/p), (18) 

a' ~ zlQs\ (19) 

z' ~ nA/
=iBernoulli(7rm) (20) 

7rm ~ Beta(a0/A',60(A'-1)/A') (21) 

8* ~ tf{0,l7lIic) (22) 
t- ~ ATiO^Ip) (23) 

7S ~ r(c0,d0) (24) 
?e ~ r(e0,/0). (25) 

Here each atom dm follows a Gaussian distribution. Each vector a1 is the Hadamard (component-wise) 
product of a 0/1 Bernoulli vector zl and Gaussian vector s!. z' defines which the atoms of the dictionary are 
used to represent image x\ and w1 contains the representation weights. By construction, a' is sparse since 
z' is generated from the Beta process, which is reviewed in the next paragraph. This is different from the 
common Laplace prior [19], which leads to many small but often nonzero coefficients. Weight s' and noise 
(' follow normal distributions parametrized by 7S and ~yf, respectively. Since there is full conjugacy in the 
hierarchical model, inference from given observations of x' can be quickly computed by variational Bayesian 
[20] or Gibbs-sampling analysis, with analytic update equations. 

The two-parameter beta process (BP) was introduced in [18]. Although it is allowed for K —> oo, we 
assume a finite K for simplicity in this review. Let [0,1] be evenly divided into A' bins. The feth bin is 

denoted by the interval Bk = (^-< jf]•  ^or eacn ^> we samP'e nk ~ Beta(^,  ^ ^    '* where such a beta 

II) 
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Figure 9:  Ground truth locations of the 6 pieces of cloth. 

distribution takes values over [0,1] and has a {/-shaped probability density function. Using 7T/t and Bjt, we 

generate a new process H(B) := J2k**l 7nt<$Bt(j3), where 6Bk(B) equals one if B = B/t and zero otherwise. 
In other words, nk = H(Bk), k — \,...,K, are a series of numbers between 0 and 1. The left plot below 
shows an example from [18] where K = 1000. Except for a few nonzeros, most locations of 7r are zero. 

0       01      02      03      0»      05      06      07      0B      0 9       1 

7T 

001070 
2 

0      ITT      07     03 
X 

0303040506070809I 

n-oT w TJ7OT      09        I 

Then, 7r/t's are used as parameters to sample a series of 0/1 Bernoulli numbers Zk ~ Bernoulli(7Tfc), i.e., Zk = 1 
with probability nk and Zk = 0 with probability 1 — ir*. Four independent samples of z are shown in the 
right plot above, which were drawn with the same 7r shown in the left plot. Obviously, they are sparse, and 
there are repeats of l's at the locations where 7iVs are relatively large. By marginalizing IT, it can be shown 

11 



Located Targets 

Figure 10:  Found locations of the 6 pieces of cloth. 

that the total number of nonzeros ||z||o of z follows a Poisson distribution with parameter a/6. Furthermore, 
for any set of M vectors {z1,..., zw}, the number of unique locations of l's follow the Poisson distribution 
with the parameter JZi=i b+1-i • ^° have the desired jointly sparse a"s, one shall adjust a and b. 

4.4 Hyperspectral Image Reconstruction and Denoising 

We apply the model x* = Da' + e! to a hyperspectral image, where x''s and the atoms in D are small 3D 
blocks (corresponding to patches for 2D images). Take a 150 x 150 x 210 hypercube for example, where 210 
is the number of bands. A block, for instance, can be 3 x 3 x 210. The set of atoms contains multiple such 
blocks, each forming a vector dm. The entire hyperspectral cube is decomposed to overlapping 3 x 3 x 210 
blocks, each being ax1. As such, all blocks of the hyperspectral image are modeled as linear combinations 
of the same set of atoms, and their combination coefficients are jointly sparse to a large extent. When there 
are missing voxels, the corresponding rows of xl = Da1 + e are also missing. In case the observations are 
noisy, the hyper-prior ">E of t is drawn from a non-informative gamma distribution. 

To recover the hyperspectral image, Gibbs inference is applied to all blocks x' = Da1 + t' from given 
incomplete observations. Note that the atoms in D, all a', as well as noise £* are simultaneous inferred. 
The computation is relatively fast using the analytic inference update equations, which exist due to full 
conjugacy. 

Numerical Results. We tested the above algorithm on a subset of the URBAN data. A reconstruction 
using 5% of the 150x150 spatial dimensions and 163 spectral bands was performed. Figures 14 and 15 show 
the results of the reconstruction. To check the quality of the reconstruction, we ran our target detection 
algorithm on the reconstructed hypercube. A comparison is shown in Figure 16. 

4.5 Integrated Endmember Recovery and Hyperspectral Image Reconstruction 
This is a project that we have partially done and will continue in the next phase of this contract. The above 
model x' = Da1 + e\ which uses image patches as dictionary atoms, does not take advantage of the fact 

L2 



Ground truth for cloth 
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Detected location of cloth 

100       200       300       400       500       600       700 800 

Figure 11: The top plot shows the whole data set and the ground truth location of the cloth(red), and the bottom shows the 
result of the detection of the cloth. 

that all hyperspectral vectors are generated from a small number of endmembers. This is another nature of 
sparsity. We have been looking for ways to exploit this property for better performance. 

The new model is xi = Eft + eJ for each spatial pixel j and fp = Da' + t' for each patch i of ji. In 
the first set of equations, E is a dictionary of endmembers that form all the hyperspectral vectors. x-> is the 
hyperspectral vector at pixel j, which is assumed to be a linear combination of the endmembers, and f? is 
the error. In reality, the combination is nonlinear due to absorption, etc. This will be considered in t? as a 
part of the future work. The set of coefficients {ft} form another 3D cube, which has the same number of 
spatial pixels as the original hyperspectral cube but a much smaller number of layers (the 3rd dimension) 
equal to the number of endmembers. In other words, the first set of equations relate the larger 3D cube x 
to the smaller 3D cube ji through endmembers. Then, in the second set of equations above, the dictionary 
model is applied to fj. Each ft is not a vector but a cube-like patch. It is assumed to be a sparse linear 
combination of a set of atoms given in the dictionary D. The dictionary D, coefficients d', and errors (' are 
to be inferred from a given observation in x. In other words, what is described in the previous subsections 
is applied to fi. 

Preliminary Numerical Results. Eventually, we plan to learn the endmembers E from the data 
at the same time D, a, and £ are learned. Modeling nonlinearity is also in our agenda. Our preliminary 
results are based on approximate endmembers, which are obtained using the algorithm VGA [21]. So at this 
moment, E is learned offline and not state-of-the-art. 

In the test, the original cube is 150 x 150 x 163. VCA gave 6 endmembers, so li is 150 x 150 x 6. Two 
sets of images are shown in Figure 17 (a) and (b), corresponding to spectral bands 1 and 6, respectively. 
The first columns show the sample points on bands 1 and 6, which are smeared by noise (SNR 7.0685dB). 
The recovered cube has an SNR 14.8368dB. In other words, not only the cube is recovered from very few 
samples, but the SNRs are doubled. At this time, the work uses approximate endmembers. We plan to 
integrate endmember recovery and target detection seamlessly into this computation. 

13 



Ground Truth for vehicle 
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Detected location of vehicle 
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Figure 12:  The top plot shows the whole data set and the ground truth location of the vehicle(red), and the bottom shows 
the result of the detection of the vehicle. 
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Figure 15: A plot of band 150 of the corrupted data, reconstructed data, and original data, 
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Figure 16: A comparison of targets detected using the original hypercube and the reconstructed hypercube. 
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Figure 17: Left to right: Very noise samples, recovered, and original. Note that the sample points (left 
column) themselves have a low SNR 7.0685dB. The recovered cube (middle column), including all voxels, 
has more than doubled SNRs. 

is 


